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Abstract

Nuclear fuel must be of high quality before being placed into service in a reactor. Fuel vendors currently use manual

inspection for quality control of fabricated nuclear fuel pellets. In order to reduce workers' exposure to radiation and

increase the inspection accuracy and speed, the feasibility of automation of fuel pellet inspection using arti®cial neural

networks (ANNs) is studied in this paper. Three kinds of neural network architectures are examined for evaluation of

the ANN performance in proper classi®cation of good versus bad pellets. Two supervised neural networks, back-

propagation and fuzzy ARTMAP, and one unsupervised neural network called ART2-A are applied. The results in-

dicate that a supervised ANN with adequate training can achieve a high success rate in classi®cation of fuel

pellets. Ó 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

The quality of fabricated nuclear fuel pellet must be

checked before the pellet is inserted into zirconium

cladding fuel rod in order to minimize the potential for

pellet±cladding interaction (PCI). Fuel pellet defects

such as crack may increase the risk of PCI [1]. Improper

shape, e.g., improper `cupping' of the pellet end, may

allow distortion and swelling due to uneven rates of heat

generation within the pellet [2,3]. PCI could lead to a

fuel element failure, allowing radioactive ®ssion prod-

ucts to enter the reactor coolant. A high coolant ®ssion

product concentration (0.5±1.0 lCi I/g of coolant) from

leaking fuel rods may necessitate an unscheduled reactor

shutdown for corrective action [4,5]. An unscheduled

reactor shutdown may cost a utility an amount ap-

proaching three million dollars per week, making fuel

integrity an important economic issue.

Westinghouse currently claims [6] that 99.995% of

their fuel rods are leak-free for their in-core service life.

The importance of defect-free fuel is emphasized when

considering a core containing 51 000 fuel rods, even a

99.995% success rate means that one should expect to

®nd two or three defective rods during each refueling

outage. Union Electric's Callaway nuclear power plant

currently uses Westinghouse fuel and has found, on an

average, 4.4 defective fuel rods per refueling outage [5].

The current practice of pellet inspection by humans is

tedious, subject to inconsistencies, and prone to error. In

addition, manual inspection is cumbersome since the

inspector must keep the pellet at arm's length and wear

glasses to protect the lens of the eye from radiation. Fuel

pellet inspection is complicated by the allowance of

some small degree of chipping and cracking. The in-

spection process, as currently performed, is essentially a

judgment call.

Quality control in fuel fabrication at Asea Brown and

Boveri Combustion Engineering Nuclear Fuel (ABB)

relies on human inspection of the manufactured fuel

pellets before insertion into the zirconium fuel tubes.

The pellets are taken from the pellet sizing machine,

dumped onto a rack, shaken into rows and then viewed

as a group. The entire group is rotated 90° four time to

provide the inspector with a 360° view of each pellet.

The sides of the pellet are examined for cracks, chips,

and unusual markings, e.g., water stains and machine

banding. The ends of the pellets are checked for defects

if edge misalignment is noticed on the pellet±pellet in-

terface when viewing the pellets from the side.

Both Westinghouse [7] and Siemens [8] use manual

inspection to check for fuel pellet defects. Siemens
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attempted to use machine vision to automate the process

in 1982, but abandoned their method because it was too

slow.

Framatome currently manufactures fuel assemblies

and does not itself manufacture uranium dioxide fuel

pellets. The pellets are purchased from Siemens and are

loaded into fuel rods at the Framatome Commercial

Nuclear Fuel Plant. The pellets are inspected prior to

shipment by Siemens, and inspected manually at the

Framatome plant before insertion into the fuel rods.

General Electric (GE) currently uses manual inspec-

tion [9]. GE attempted developing an automatic sorter

and inspection system using laser techniques in 1984. The

inspection system pushed the pellets through in a single

stream and scanned the pellet circumference with a laser.

An algorithm developed by GE analyzed the re¯ected

beam. GE obtained three patents, named, Tray Loader in

1984, Automated Inspection System in 1985, and Optical

Inspection System in 1985. However, their system is

currently not in use due to a high good pellet rejection

rate, high cost, and maintenance di�culties. GE claims to

have spent 30 man years developing their system.

The objective of this work is to evaluate the feasibility

of using Arti®cial Neural Networks (ANNs) for pellet

image classi®cation. This paper presents the results of the

classi®cation performance of three ANNs, namely,

backpropagation, fuzzy ARTMAP, and adaptive reso-

nance theory ART2-A paradigm. The above-mentioned

networks are selected because of their general acceptance

by the community, pattern recognition capabilities, and

suitability of the learning algorithm to be automated. In

the following sections, ANNs, data acquisition, and

corresponding inspection results are described.

2. Arti®cial neural networks

ANNs are biologically inspired algorithms which

attempt to simulate certain aspects of human intelli-

gence, particularly the ability to learn and generalize.

ANNs are often used for pattern recognition and clas-

si®cation type problems which do not readily yield

themselves to solution by explicit sequential algorithms.

This type of problem may require complex data trans-

lation where no pre-de®ned mapping function exists, or

may require a `best guess' as an output when presented

with noisy inputs [10].

The speci®c characteristics of an ANN are a result of

the network paradigm utilized. The network paradigm is

speci®ed by the network architecture and neuro-dy-

namics. The network architecture de®nes the arrange-

ment of processing elements (PEs) and their

interconnections. This establishes which PEs are inter-

connected, inputs to and outputs from PEs, the group or

layers of PEs, and how the information ¯ows in the

network. For example in a feedforward network,

the information will ¯ow strictly from the input to

the output (see Fig. 1).

The PEs (also called neurons) have a number of in-

puts which are modi®ed by adaptive coe�cients

(weights) and generate an output signal (see Fig. 2).

Neuro-dynamics speci®es how the inputs to the PE are

going to be combined together, and what type of func-

tion or relationship is going to be used to develop the

output, and how the weights are going to be modi®ed.

The learning mechanism which handles modi®cations

to the weights and any other organization of the net-

work can be classi®ed under supervised learning, unsu-

pervised learning, and self-supervised (reinforcement)

learning. Supervised learning takes place when the net-

work is trained using pairs of inputs and desired out-

puts. ANNs learn to associate presented outputs with

presented inputs by adjusting the weights on the neu-

ron±neuron connections. They may be able to produce

the correct outputs when presented with new inputs after

being properly trained. In unsupervised learning, inputs

are entered and the network is able to organize its own

categories. Self-supervised learning adds the feedback to

unsupervised learning to correct errors in the pattern

recognition process.

The spectrum of di�erent paradigms is quite exten-

sive. For example, the network architectures range from

simplistic one-layer to hierarchical networks. In addi-

tion, there are a large number of algorithms for modi-

®cation of the adaptive coe�cients. The various existing

paradigms have their limitations and strengths, hence

one must identify the suitable application areas for

which they lend themselves.

It is necessary to explain some of the ANN related

terminologies used in this work.

Features: A feature is a unique measurable attribute

of a pattern. A feature vector is a collection of features

that completely describe a pattern. This feature vector is

presented to the ANN as input during the training

process.

Feature space: Feature space is a set of feature values

that determines a pattern class, from which the feature

vector is determined.

Fig. 1. A feedforward network.
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Generalization: Generalization is the ability of a

network to model the behavior of a speci®c relationship.

This capability can be measured by the performance of

the network for examples outside of the training set.

According to Tishby et al. [11] ``various researchers have

shown that there is often little connection between the

error at the end of the training process, namely the

training error, and the network's ability to generalize

outside of the training set''.

Vigilance parameter: Vigilance parameter q�06 q6 1�
is used by the adaptive resonance theory family of neural

networks in order to determine if an input pattern is

`similar' to the existing prototype. The vigilance pa-

rameter �q� sets the criterion for matching, under the

exact same conditions, lower vigilance leads to coarser

categories and higher vigilance to ®ner categories. The

optimum q is obtained by trial and error.

3. Data acquisition

ABB, a nuclear fuel fabrication plant in Hematite,

Missouri, proved the sample nuclear fuel pellets for this

study. A total of 252 pellets with various defects were

selected for this research work. Each pellet was photo-

graphed four times at rotations of 90°. This created four

images labeled a, b, c, and d. Although pellets are ran-

domly selected in this analysis, the image labeled a may

appear more often than others. This is because when

taking the photos from each pellet, the ®rst picture was

taken directly from the defective area, hence image la-

beled a appears quite often in our sample images for

analysis. The resultant black and white negatives were

scanned into the computer in 256 grayscale mode. The

grayscale intensity value of 255 is assigned to the lightest

(white) pixel and the intensity value of 0 is assigned to

the darkest (black) pixel. Measurements on scanned

pellet images revealed that at a resolution of 150� 150

pixels the pellets within the scanned image had dimen-

sions of 56� 45 pixels. It was determined that each

image should be cropped so that the entire pellet surface

would be contained within four images, with little

overlap. A crop size of 56� 33 allowed for the trimming

of shadows on the extreme pellet circumference while

covering the entire pellet [12]. Fig. 3 shows several kinds

of pellet defects and their scanned images.

Fig. 3. Fuel pellet images: (a) Good pellet; (b) Large end defect; (c) Chip; (d) Rippled surface; (e) Circumferential Crack; (f) Banded.

Fig. 2. A processing element.
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Photo images can be processed by assigning color

scale values to each pixel and representing each pixel as

an input to an empirical modeling tool, such as an

ANN. This approach would result in a very large

number of inputs. In the application of ANNs, a large

number of input data may cause complications for

proper pattern classi®cation [13]. One technique, feature

extraction, helps alleviate such a problem. Feature ex-

traction is analogous to data compression. By reducing

the dimensionality of an image to a few salient features,

one avoids irrelevant (noisy) input, and increases the

speed of classi®cation and pattern recognition which in

turn increases the inspection speed.

Multiple features whose values are expected to be

sensitive to the presence of defects within a pellet image

were selected for extraction from the pellet image ®les.

Table 1 lists the 39 features extracted from each image

®le. In this work the Matlab software with image pro-

cessing toolbox were used for the purpose of converting

the image ®les into ASCII ®les containing grayscale in-

teger data. Mean grayscale intensity, grayscale intensity

variance, grayscale intensity skew (a measure of histo-

gram asymmetry about its mean), and grayscale inten-

sity kurtosis (an indication of departure from a normal

distribution) provided the grayscale intensity informa-

tion on each image [14,15]. The mean, variance, skew,

and grayscale intensity kurtosis are described in

Eqs. (1)±(4), respectively. The variance of grayscale in-

tensity is least for a good pellet and greatest for a rippled

surface pellet. The mean intensity for the crack image is

Table 1

List of features extracted from each pellet image

No. Parameter Description

1 m Mean grayscale intensity of matrix

2 v Grayscale intensity variance of matrix

3 s Grayscale intensity skew

4 k Grayscale intensity kurtosis

5 pa Number of pixels above intensity 130

6 pc Number of pixels between intensity 80 and intensity 130

7 pb Number of pixels below intensity 80

8 x1a 1st moment of inertia, pixels above intensity 130, binary

9 y1a 1st moment of inertia, pixels above intensity 130, binary

10 x1b 1st moment of inertia, pixels below intensity 80, binary

11 y1b 1st moment of inertia, pixels below intensity 80, binary

12 x2a 2nd moment of inertia, pixels above intensity of 130, binary

13 y2a 2nd moment of inertia, pixels above intensity of 130, binary

14 x2b 2nd moment of inertia, pixels below intensity of 80, binary

15 y2b 2nd moment of inertia, pixels below intensity of 80, binary

16 x1 1st moment of inertia, grayscale

17 y1 1st moment of inertia, grayscale

18 x2 2nd moment of inertia, grayscale

19 y2 2nd moment of inertia, grayscale

20 x1inv 1st moment of inertia, inverted grayscale

21 y1inv 1st moment of inertia, inverted grayscale

22 x2inv 2nd moment of inertia, inverted grayscale

23 y2inv 2nd moment of inertia, inverted grayscale

24 x1ano 1st moment of inertia, pixels above a threshold, binary, alternative origin

25 y1ano 1st moment of inertia, pixels above intensity 130, binary, alternative origin

26 x1bno 1st moment of inertia, pixels below intensity 80, binary, alternative origin

27 y1bno 1st moment of inertia, pixels below intensity 80, binary, alternative origin

28 x2ano 2nd moment of inertia, pixels above intensity 130, binary, alternative origin

29 y2ano 2nd moment of inertia, pixels above intensity 130, binary, alternative origin

30 x2bno 2nd moment of inertia, pixels below intensity 80, binary, alternative origin

31 y2bno 2nd moments of inertia, pixels below intensity 80, binary, alternative origin

32 x1no 1st moment of inertia, grayscale, alternative origin

33 y1no 1st moment of inertia, grayscale, alternative origin

34 x2no 2nd moment of inertia, grayscale, alternative origin

35 y2no 2nd moment of inertia, grayscale, alternative origin

36 x1invno 1st moment of inertia, inverted grayscale, alternative origin

37 y1invno 1st moment of inertia, inverted grayscale, alternative origin

38 x2invno 2nd moment of inertia, inverted grayscale, alternative origin

39 y2invno 2nd moment of inertia, inverted grayscale, alternative origin
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slightly lower than the mean for a good image. This is to

be expected due to the e�ect of the presence of the dark

pixels (hence, lower intensity values on the scale of 0±

255) in the crack portion of the image. The mean in-

tensity for the rippled surface pellet image is consider-

ably higher due to many light areas (hence, higher

intensity values on the scale of 0±255) on the surface of

the pellet.

mean �
P

i
n
; �1�

variance �
P�iÿ m�2

n
; �2�

skew �
P��iÿ m�=r�3

n
; �3�

kurtosis �
P��iÿ m�=r�4

nÿ 3:0
; �4�

where, the summation is performed over all image pix-

els, and i is the pixel intensity, n the total number of

pixels, m the mean, and r the intensity standard devia-

tion.

Other geometrical moment parameters were selected

for extraction in order to provide information about

defect type, orientation, and size [14]. For example, the

®rst moment of inertia (center of mass) has the potential

to provide information about the presence or absence of

defects. It would be expected that a chip free pellet im-

age center of mass calculation would yield coordinates

that are roughly in the center of the pellet image. When

large defects such as chips, shears, or ripples appear, the

center of mass location would slowly migrate. This is

why the ®rst moment of inertia is selected as a feature.

Geometrical second moment of inertia is selected as a

feature because it has the potential to provide informa-

tion about crack orientation.

The ®rst and second moment of inertia about the x-

axis shown in Fig. 4 are calculated from Eqs. (5) and

(6), respectively. Note, the ®rst moment of inertia (center

of mass) is calculated using the pixel intensity as the

`mass' in the standard center of mass equation.

x1 �
P�yi dA�P�i dA� ; �5�

x2 �
X
�y2i dA�; �6�

where the summation is performed over all image pixels

with y being the pixel number from the origin on the y-

axis in Fig. 4, i representing the pixel intensity, and

dA� 1.

The feature extraction programs use a Cartesian co-

ordinate system with the origin taken as the upper left

hand corner of the image with the positive x-axis ema-

nating downward (along the rows) from the origin O.

The positive y-axis emanates toward the right (along the

columns) from this origin. Other features are extracted

at new origin O0 (see Fig. 4). Use of an alternate origin is

suggested by the necessity of creating a parameter set

that is sensitive to defects in any location within the

pellet image. The variability in the possible location of

defects suggests that second moment of inertia feature

variables be examined using two origins.

Parameters calculated using pixel grayscale intensity

are biased to favor the contribution of the lighter pixels

due to white being represented as 255 and black as 0.

For inverted features, each pixel's intensity was inverted

by subtracting it from 255, the maximum intensity.

Parameter calculation with inversion is suggested due

to the fact that dark defects such as cracks and chips,

when inverted, have more in¯uence on ®rst and second

moment parameters. For this reason, parameters were

also calculated using inverted intensities �255ÿ intensity�.
The use of thresholds in calculating moments of

inertia was motivated by a desire to increase the sensi-

tivity of these variables to the presence of defects. Image

pixel intensities were examined to determine appropriate

values for the upper and lower pixel thresholds used for

many of the routines in the feature extraction programs.

A lower threshold intensity �� 80� and an upper

threshold in the intensity region 130±145 was deter-

mined to be appropriate [12].

Figs. 5±7 show the pattern created by the trend line

connecting these 39 feature parameters for good pellet,

crack pellet and rippled surface pellet, respectively.

These patterns clearly illustrate how the extracted fea-

tures change from pellet to pellet, hence creating a un-

ique pattern for each type of defect. Although the

features calculated here do not uniquely identify object,

they do reduce the number of inputs from 1848 inputs

(56 ´ 33 pixels) per image to less than 40, more than a

98% reduction in input ®le size.

4. Application of backpropagation and fuzzy ARTMAP

Backpropagation Network (BPN) [16] and fuzzy

ARTMAP [17,18] are supervised neural networks. A

supervised network is one that has sample input and

associated correct outputs given to it simultaneously as

training examples so that error terms can be calculated

and weights adjusted.Fig. 4. Pellet image coordinate system.
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Backpropagation is a multilayered feedforward net-

work. As shown in Fig. 1, it consists of one input layer,

one output layer and a minimum of one hidden layer.

The learning takes place using a pre-de®ned set of input±

output example pairs and a two phase propagate±adapt

cycle. The input pattern is applied as stimulus to the ®rst

layer of the network units. Sigmoid function is com-

monly used (see Fig. 2) for output function of a unit in

BPN application. The pattern is propagated through

each upper layer until an output is generated. This

output is then compared to the desired output, and the

error signal is computed for each output unit. The error

signal is propagated backward from the output layer to

each node in the intermediate layers. However, each unit

in the intermediate layer receives only a portion of the

total error signal, based on the relative contribution the

unit has made to the original output. This process re-

peats until each node in the network has received an

error signal that describes its relative contribution to the

total error. Based on the error signal received, connec-

tion weights are updated by each unit to cause the net-

work to converge toward a state that allows all the

training pattern to be encoded. The learning rule used in

backpropagation is called the Generalized Delta Rule.

The Generalized Delta Rule minimizes the root mean

square (RMS) error between the actual predicted output

and the desired output by modifying network weights.

Suppose we have a three layer network. When the pth

pattern is applied to the input layer, the net input to the

jth node in the hidden layer is: netj �
Pn

i�0 Wj;ixp;i, where

Fig. 6. Feature parameters of fuel pellet with crack defect.

Fig. 5. Good fuel pellet feature parameters.

Fig. 7. Feature parameters of fuel pellet with rippled surface.
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wj;i is the weight value of the connection from the ith
input node to the jth hidden layer node. xp;i is the input

value to the ith node in the input layer for pattern p. The

output of the jth node in the hidden layer is

xp;j � f
Xn

i�0

wj;ixp;i

 !
;

where f is generally a sigmoid function.

Thus the net input to the kth node of the output layer

netk �
P

j wk;jxp;j, where again wk;j is the weight value of

the connection from the jth hidden layer node to the kth

output layer node. The output of the kth node of the

output layer is

op;k � f
X

j

wk;jxp;j

 !
;

where f is generally a sigmoid function. Suppose the

desired output of the kth node of output layer is dp;k , the

corresponding squared error is

l2
p;k � jdp;k ÿ op;k j2:

The total error (for the pattern p) is given by

Ep �
P

k�lp;k�2. One way to minimize Ep is to use the

gradient descent method. Since op;k depends on the

network weights, Ep is also a function of the network

weights. According to the gradient descent method, the

direction of weight change of w should be in the same

direction as ÿoEp=ow. We calculate the value of

oEp=owk;j for each connection from the input layer to the

output layer. Similarly, we calculate the value of

oEp=owj;i for each connection from the input layer to the

hidden layer. The connection weights are then changed

by using the values so obtained [16].

The main advantages of BPN are its generalization

capability and noise tolerance. Generalization means

that, given several di�erent input vectors all belonging to

the same class, a BPN will learn to keyo� of signi®cant

similarities in the input vectors and irrelevant features

will be ignored. If a BPN is inadequately trained on a

particular class of input vectors, subsequent identi®ca-

tion of members of that class may be unreliable. Also,

there are no clear guidelines for choosing the number of

neurons in the hidden layer, and even the number of

hidden layers required. Generally, decision on the

number of hidden layer and neurons are made based on

trial and error seeking as few hidden-layer units as

possible without losing the accuracy of the system. One

hidden layer with optimum number of neurons may be

adequate in many applications. In this ®rst attempt in

examining BPN performance for this application, it was

decided to ®rst use one hidden layer, but optimize the

number of neurons in that hidden layer by trial and

error. To ®ne tune the BPN performance in future ap-

plication, the e�ect of more hidden layer will be exam-

ined. Developing a BPN software program is not

challenging and this has led to its popularity. Com-

mercial software are available for BPN network. The

software `Matlab' can also be used for developing BPN

software. In this application, the software for Back-

propagation neural network was obtained from Uni-

versity of Nevada, School of Medicine. This BPN

utilizes a Sigmoid function for a unit transfer function.

Also, due to fast convergence in our application, there

was no need to use a bias node. The training time using a

Power Macintosh 8500/120 was less than 5 min for a

total of 120 training set with each set containing 39 in-

puts and training process of 5000 epochs (at which the

output RMS error stabilized at a value of 0.31).

Fuzzy ARTMAP network is selected in this work due

to its capability of handling non-stationary stochastic

signal as well as supervised learning. Fuzzy ARTMAP

has a more complicated structure than a BPN network.

Although, it incorporates the same learning strategy as a

BPN, i.e., the supervised method, it has extra features

like self-organization and self-stabilization which a BPN

lacks.

Adaptive Resonance Theory (ART) 1 represents a

family of ANNs which self-organize categories in re-

sponse to arbitrary sequences of input patterns in real

time for pattern recognition. A class of these networks,

called ART 1, which is unsupervised, can be used only

for binary patterns. ART 2, which is also an unsuper-

vised class, responds to both binary and analog patterns.

The class `fuzzy' ART is similar in architecture to ART

1, however, fuzzy operators are added in order to handle

analog patterns without losing the advantages of ART 1

architecture. The class ARTMAP (`predictive' ART) is

built upon the basic ART designs, while incorporating

supervision in the learning process. It has the capability

of handling non-stationary stochastic signal as well as

supervised learning.

ART network architecture consists of two major

subsystems called the attentional subsystem and orient-

ing subsystem. The attentional subsystem as shown in

Fig. 8 consists of two layers of PEs, where all the pro-

cessing of input pattern takes place. The two layers of the

attentional subsystems are the F1 layer (input layer) and

the F2 layer (output layer). The neurons in both layers

are fully interconnected. Patterns of activity that develop

over the nodes in the two layers of the attentional sub-

systems is called the short-term memory (STM) traces

because they exist only in association with a single ap-

plication of an input vector. The weights associated with

the bottom±up and top±down connections between F1

and F2 layers are called long-term memory (LTM) traces

1 All ART neural network software programs and feature

extraction programs are written in-house. The reader should

refer to Refs. [18,19] for complete algorithm to develop an ART

software program.
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because they encode information that remains a part of

the network for an extended period of time. The Gain

Control in ART networks is a mechanism which acts to

adjust overall sensitivity to the input patterns and to

coordinate the di�cult functions of the ART subsystems.

The orienting subsystem acts as a novelty detector.

The orienting subsystem in ART networks is responsible

for controlling the ®neness or coarseness of the pattern

being recognized. It has only two input signals and one

output signal. The two inputs are the input data pattern

and the overall activity in F1. The single output of the

orienting system goes to F2 as a reset wave (see Fig. 8).

The resonance and reset is accomplished in the orienting

subsystem through a very important parameter called

the vigilance `q'. The vigilance is a parameter which

points to the degree to which the system discriminates

between di�erent classes of input patterns. It can have

any decimal value between 0 and 1. For a given set of

patterns to be classi®ed, a large value of q will result in

®ner di�erentiation between patterns than a smaller

value of q.

Fuzzy ARTMAP (see Fig. 9) is built with a pair of

fuzzy ART modules, Fuzzy ARTa and Fuzzy ARTb.

These networks are designed as generalized ART except

the set-theoretic operation of intersection �\� is replaced

by the fuzzy set theory conjunction�^�. This fuzzy set

operator makes fuzzy ARTMAP capable of handling

both analog and binary data and makes the ART neuro-

dynamic equations much simpler. The setup description

of the two modules of fuzzy ARTMAP makes the un-

derstanding of the complete network much easier. As

seen in Fig. 9, the two fuzzy ART modules a and b are

connected with an inter-ART module called the Map-

®eld Layer. The Map®eld associates the fuzzy ARTa

recognition categories with the fuzzy ARTb recognition

categories. If a match occurs at the Map®eld layer then

learning takes place. If a mismatch occurs, then the

match tracking process is initiated. Match tracking is a

method of forcing the mismatched fuzzy ARTa winning

node to reset by incrementing qa (vigilance parameter)

by a small value, such that the current winning node fails

the resonance condition in the subsequent trial.

During the supervised learning the Fuzzy ARTa

module receives a stream (a) of input patterns and Fuzzy

ARTb receives a stream (b) of input patterns, where (b)

is the correct prediction, given (a). These modules are

linked by an associative learning network and an inter-

nal controller that ensures autonomous system opera-

tion in real time.

The Fuzzy ARTa complement coding preprocessor

transforms the Ma-vector a into a 2Ma-vector A � �a; ac�
at the Fuzzy ARTa ®eld F a

0 , where ac is the complement

of vector a (i.e., ac
i � 1ÿ ai for each normalized element

i of the vector a). A is the input vector to Fuzzy ARTa

®eld F a
1 . The input to F b

1 , like Fuzzy ARTa, is the 2Mb-

vector B � �b; bc�, where bc is the complement of vector

b. For each input (I) in the 0±1 range presented to the

network, the net value at the output is compared as

netj�I� � jI ^ Wjj
a� jWjj ;

where a � 0:00001, I is input vector, Wj are adaptive

weights or LTM traces (initialized to 1), ^ is the fuzzy

And operator.

The maximum of netj�I� is selected. For this node J,

it is checked if the vigilance �q� parameter is met, that is

Fig. 8. General ART Network.
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jI ^ Wjj
jI j Pq

resulting in node J being committed, else reset occurs at

the selected output node and is inhibited for further

competition for input I. This process is repeated until

the vigilance criteria equation is satis®ed. If the output

node satis®es the vigilance criteria then learning takes

place using 2

W new
j � �I ^ W old

j �:
In order to evaluate and compare the performance of

BPN and fuzzy ARTMAP networks, the same number

of training sets and testing sets were applied to both.

First a total of 30 sets of data are randomly selected, 15

good pellets and 15 pellets with various defects (5

banded, 4 end defect, and 6 chipped pellets) for training.

Similarly, 20 good sets and 20 bad sets are randomly

selected (5 banded, 4 end defect, and 11 chipped pellets)

for testing. It may seem not necessary to have more

teasing data than training data, however, the same 40

test data are needed again when increasing the training

data from 30 to 120 in the second trial. Two output

nodes are set for the backpropagation and the fuzzy

Fig. 9. Architecture of fuzzy ARTMAP neural network.

2 Presentation of more detail algorithm of ART family of

neural netwoeks is quite lengthy and is certainly beyond the

scope of this paper. The interested reader should refer to Refs.

[18,19] for further information.
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ARTMAP networks. Although, the BPN network could

work just as well with one output node in this applica-

tion, the two output node was preferred in order to

create an output display that is easy to read.

A test is performed to see if a BPN would successfully

identify bad pellets. To get a good BPN structure for this

special purpose, di�erent architectures of backpropaga-

tion with one hidden layer and the same input and

output nodes are examined. The number of nodes in the

hidden layer ranged from 15 to 40. Training proceeded

for 5000 epochs, at which the output RMS error stabi-

lized at approximately 0.31. Best performance was

achieved when using 33 nodes in the hidden layer (i.e.

minimum RMS error), as shown in Fig. 10. For each

pellet image the 39 features described in Table 1 are

extracted and normalized (i.e. a value between 0 and 1)

and then used as input to the neural network. The

normalization process consisted of two steps. The ®rst

step was to calculate the value of the 39 features for a

solid white pellet (i.e. intensity of 255 for all pixels) as

well as for a solid black pellet (i.e. intensity of 0 for all

pixels). The second step was to use the maximum value

of each feature from either the solid white or solid black

pellet as the normalization devisor for the corresponding

feature for each pellet examined in this application. The

®nal network architecture consisted of 39 nodes for in-

puts layer (using the 39 normalized feature), 33 for

hidden layer and 2 nodes for the output layer. The re-

sults of Pass/Fail classi®cation of BPN are given in

Table 2. In the ®rst trial using 15 training samples, the

BPN performs well with a 100% success rate at identi-

fying 20 good pellets, a 65% success rate for bad pellets,

and an overall success rate of 82.5%.

The Pass/Fail classi®cation of the fuzzy ARTMAP

result is also given in Table 2. The vigilance factor for

Fuzzy ARTMAP is set to 0.85 based on the optimal

classi®cation performance in this study. Fuzzy ART-

MAP performs with 85% correct rate at identifying 20

good pellets, 75% for bad pellets, and an overall success

rate of 80%.

Fig. 10. Output RMS error versus number of node in hidden layer.

Table 2

Results of pass/fail classi®cation

Pellet image type Number of training sets Number of testing sets Correct classi®cation

Backpropagation

Good 15 20 20/20

Bad 15 20 13/20

Total 30 40 33/40 (82.5%)

Backpropagation

Good 60 20 20/20

Bad 60 20 16/20

Total 120 40 36/40 (90%)

Fuzzy ARTMAP

Good 15 20 17/20

Bad 15 20 15/20

Total 30 40 32/40 (80%)
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To check the e�ect of the number of training data on

the classi®cation outcome, the training sets are increased

to 120 (60 for good and 60 for bad pellets (22 banded, 12

end defect, and 26 chipped pellets)) for both backprop-

agation and fuzzy ARTMAP. Testing data are still the

same original 40 sets. The overall performance of

backpropagation is improved from 82.5% to 90% cor-

rect rate as shown in Table 2. Increasing the training sets

does not improve the performance of fuzzy ARTMAP.

It must be mentioned that although the number of

training sets is increased, there are not enough sample

pellets for certain types of defects (i.e. cracks) for

training and testing by BPN or fuzzy ARTMAP. More

training sets of all types of defects are necessary to ob-

tain the optimum performance of the supervised neural

networks. In addition, in this ®rst examination of the

neural networks performance for pellet inspection, the

objective was to recognize good versus bad (i.e. defec-

tive) pellets apart. Hence, it was not necessary to identify

the type of defect. Therefore, defective pellets were se-

lected randomly and no attempt was made to make an

orderly training set with equal sample of each type of

defect. In fact, the abundant number of chipped pellet

resulted in utilization of more of them both in training

and testing.

5. Application of unsupervised ART2-A neural network

ART2-A (`algorithmic' ART), an unsupervised net-

work, is a special case of ART2 paradigm which em-

phasizes the intermediate and fast learning rates, hence

accelerating the learning process by 3 orders of magni-

tude. Fig. 11 shows the architecture and the learning

mechanism of ART2-A network. ART2-A has three

®elds: F0; F1, and F2 (see Fig. 11). The output of the F0

®eld is the vector I de®ned by

I � normal�f �normal�I0���;
where I0 is the input vector of dimensionality M, and

normal is an operator de®ned by

normal�x� � x=kxk
and f( ) is a piecewise linear function:

f �x� � 0 if 06 x < h;

x if x P h;

�
with 0 < h6 �M�ÿ1=2

:
A test is performed to determine the feasibility of

using ART2-A to carry out the pass/fail inspection.

Forty good pellets and 40 bad pellets (7 banded, 7 end

defect, and 26 chipped pellets) are randomly selected for

ART2-A application. Each input ®le to the ART2-A

network consists of four sets of data, two sets of good

pellet and two sets of bad pellet data. Each set consists

of the same normalized 39 features described in Table 1.

ART2-A evaluates each ®le, and based on the vigilance

input, assigns an integer to each image representing

ART2-A network classi®cation. A correct identi®cation

with the optimum vigilance is a report of `0011' ± two

zeros indicating a group containing two of a kind, fol-

lowed by two ones indicating a group of two of another

kind. Since we are testing good versus bad classi®cation,

and output of 0012 is also considered as a correct clas-

si®cation. This is because 0 represents a good pellet and

anything other than 0 represents a defective pellet. When

the two defective pellets do not have the same defects,

then they are classi®ed separately also, i.e., an output of

`0012' instead of `0011'. It should be mentioned that two

sets of each category (good and bad) must be used for

proper evaluation of ART2-A network performance.

This is because if using only one set, then with high

enough vigilance factor one can always separate the two

category apart, resulting in a meaningless test and 100%

success rate.

Table 3 shows the testing results using ART2-A. As

mentioned above, there are four sides (images), a, b, c

and d, for each pellet. The last alpha letter in the pellet

name refers to the pellet side, and the number in the ®le

name refers to the pellets number, e.g., p2a refers to

pellet number 2, side a. All applied data are randomly

selected in this test. Results in Table 3 indicates a success

rate of classi®cation of 16/20 (80%) for the unsupervised

network ART2-A.

To check the impact of the number of features on the

unsupervised ART2-A network performance, a new test

is performed using nine selected features corresponding

to features number 3±11 in Table 1. These inputs are

selected based on two criteria: (a) they must represent

the most sensitive features according to the feature

patterns in Figs. 5±7, and (b) select only one set of

moment of inertia features to avoid possible noisy input

data. The result is again an 80% success rate of correct

classi®cation as shown in Table 4. Reducing the number

of features from 39 to 9 clearly does not improve the

overall performance in separating good versus bad (de-

fective) pellets. Although performance is not improved,

the result indicates that an overall smaller vigilance q is

required than when using all 39 features. This indicates

that patterns are not too similar to require a ®ne cate-

gory recognition (i.e., high vigilance q) as was the case

for the ®rst test with 39 feature input.

6. Conclusions

The results of network classi®cation in this study

show that a supervised network is required for proper

classi®cation of fuel pellets. Although the overall success

rate is 90% for BPN network (see Table 2), the fact that
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it is safer to miss a good pellet than to miss catching a

bad pellet, an 80% success rate for bad pellet test is not

exciting. On the other hand, missing too many good

pellets is also not acceptable economically. Therefore,

the high success rate (100%) for good pellet classi®cation

of BPN network is very exciting. The results obtained

here are generally encouraging, considering this is a ®rst

attempt in testing the neural networks performance in

pattern recognition of good versus defective pellet. In

addition, due to lack of su�cient cracked pellet (only 3

cracked pellets in the 252 sample pellets), crack image

was not included in tests presented in this paper. In view

of the fact that some of the features described here are

sensitive to crack defect, it is expected that training with

more samples of all type of defects would improve the

classi®cation performance of supervised neural net-

works. Work is in progress (with support from the De-

partment of Energy) using machine vision techniques

and fuzzy logic for pellet inspection and comparison

with ANN performance.

Fig. 11. The architecture and neuro-dynamics of ART2-A network.
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